Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Sivaraman (2020) conjectured that if G is a graph with no induced even cycle then there exist sets X1,X2⊆V(G) satisfying V(G)=X1∪X2 such that the induced graphs G[X1] and G[X2] are both chordal. We prove this conjecture in the special case where G contains no sector wheel, namely, a pair (H,w) where H is an induced cycle of G and w is a vertex in V(G)∖V(H) such that N(w)∩H is either V(H) or a path with at least three vertices.more » « lessFree, publicly-accessible full text available December 1, 2025
- 
            Abstract Recently, Dvořák, Norin, and Postle introduced flexibility as an extension of list coloring on graphs (J Graph Theory 92(3):191–206, 2019, https://doi.org/10.1002/jgt.22447 ). In this new setting, each vertex v in some subset of V ( G ) has a request for a certain color r ( v ) in its list of colors L ( v ). The goal is to find an L coloring satisfying many, but not necessarily all, of the requests. The main studied question is whether there exists a universal constant $$\varepsilon >0$$ ε > 0 such that any graph G in some graph class $$\mathscr {C}$$ C satisfies at least $$\varepsilon$$ ε proportion of the requests. More formally, for $$k > 0$$ k > 0 the goal is to prove that for any graph $$G \in \mathscr {C}$$ G ∈ C on vertex set V , with any list assignment L of size k for each vertex, and for every $$R \subseteq V$$ R ⊆ V and a request vector $$(r(v): v\in R, ~r(v) \in L(v))$$ ( r ( v ) : v ∈ R , r ( v ) ∈ L ( v ) ) , there exists an L -coloring of G satisfying at least $$\varepsilon |R|$$ ε | R | requests. If this is true, then $$\mathscr {C}$$ C is called $$\varepsilon$$ ε - flexible for lists of size k . Choi, Clemen, Ferrara, Horn, Ma, and Masařík (Discrete Appl Math 306:20–132, 2022, https://doi.org/10.1016/j.dam.2021.09.021 ) introduced the notion of weak flexibility , where $$R = V$$ R = V . We further develop this direction by introducing a tool to handle weak flexibility. We demonstrate this new tool by showing that for every positive integer b there exists $$\varepsilon (b)>0$$ ε ( b ) > 0 so that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_b$$ K 4 , C 5 , C 6 , C 7 , B b is weakly $$\varepsilon (b)$$ ε ( b ) -flexible for lists of size 4 (here $$K_n$$ K n , $$C_n$$ C n and $$B_n$$ B n are the complete graph, a cycle, and a book on n vertices, respectively). We also show that the class of planar graphs without $$K_4, C_5 , C_6 , C_7, B_5$$ K 4 , C 5 , C 6 , C 7 , B 5 is $$\varepsilon$$ ε -flexible for lists of size 4. The results are tight as these graph classes are not even 3-colorable.more » « less
- 
            For an $$r$$-uniform hypergraph $$H$$, let $$\nu^{(m)}(H)$$ denote the maximum size of a set $$M$$ of edges in $$H$$ such that every two edges in $$M$$ intersect in less than $$m$$ vertices, and let $$\tau^{(m)}(H)$$ denote the minimum size of a collection $$C$$ of $$m$$-sets of vertices such that every edge in $$H$$ contains an element of $$C$$. The fractional analogues of these parameters are denoted by $$\nu^{*(m)}(H)$$ and $$\tau^{*(m)}(H)$$, respectively. Generalizing a famous conjecture of Tuza on covering triangles in a graph, Aharoni and Zerbib conjectured that for every $$r$$-uniform hypergraph $$H$$, $$\tau^{(r-1)}(H)/\nu^{(r-1)}(H) \leq \lceil{\frac{r+1}{2}}\rceil$$. In this paper we prove bounds on the ratio between the parameters $$\tau^{(m)}$$ and $$\nu^{(m)}$$, and their fractional analogues. Our main result is that, for every $$r$$-uniform hypergraph~$$H$$,\[ \tau^{*(r-1)}(H)/\nu^{(r-1)}(H) \le \begin{cases} \frac{3}{4}r - \frac{r}{4(r+1)} &\text{for }r\text{ even,}\\\frac{3}{4}r - \frac{r}{4(r+2)} &\text{for }r\text{ odd.} \\\end{cases} \]This improves the known bound of $$r-1$.We also prove that, for every $$r$$-uniform hypergraph $$H$$, $$\tau^{(m)}(H)/\nu^{*(m)}(H) \le \operatorname{ex}_m(r, m+1)$$, where the Turán number $$\operatorname{ex}_r(n, k)$$ is the maximum number of edges in an $$r$$-uniform hypergraph on $$n$$ vertices that does not contain a copy of the complete $$r$$-uniform hypergraph on $$k$$ vertices. Finally, we prove further bounds in the special cases $(r,m)=(4,2)$ and $(r,m)=(4,3)$.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
